Home

Remarcabil Hostel Bunătate titanium nitride band gap alee pânză tine minte

First-principles study of phase stability of Ti2N under pressure
First-principles study of phase stability of Ti2N under pressure

Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in  the visible light: AIP Advances: Vol 3, No 6
Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light: AIP Advances: Vol 3, No 6

Impact of surface oxidation on the structural, electronic transport, and  optical properties of two-dimensional titanium nitride (Ti3N2) MXene -  ScienceDirect
Impact of surface oxidation on the structural, electronic transport, and optical properties of two-dimensional titanium nitride (Ti3N2) MXene - ScienceDirect

Engineering the band gap of Hf2CO2 MXene semiconductor by C/O doping |  SpringerLink
Engineering the band gap of Hf2CO2 MXene semiconductor by C/O doping | SpringerLink

Design of Metastable Tin Titanium Nitride Semiconductor Alloys
Design of Metastable Tin Titanium Nitride Semiconductor Alloys

Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven  Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy  Materials - Wiley Online Library
Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy Materials - Wiley Online Library

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure. | Semantic Scholar
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure. | Semantic Scholar

Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to  Solid State Energy Conversion | IntechOpen
Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to Solid State Energy Conversion | IntechOpen

Computational Dissection of Two-Dimensional Rectangular Titanium  Mononitride TiN: Auxetics and Promises for Photocatalysis
Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis

Materials | Free Full-Text | Optical Properties and Plasmonic Performance  of Titanium Nitride
Materials | Free Full-Text | Optical Properties and Plasmonic Performance of Titanium Nitride

Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to  Solid State Energy Conversion | IntechOpen
Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to Solid State Energy Conversion | IntechOpen

Hot Electron Excitation from Titanium Nitride Using Visible Light
Hot Electron Excitation from Titanium Nitride Using Visible Light

Energy band gap of titanium nitride films deposited on a silicon... |  Download Scientific Diagram
Energy band gap of titanium nitride films deposited on a silicon... | Download Scientific Diagram

Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium  Nitride - Naldoni - 2017 - Advanced Optical Materials - Wiley Online Library
Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride - Naldoni - 2017 - Advanced Optical Materials - Wiley Online Library

Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts  for Efficient Silicon Solar Cells - ScienceDirect
Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts for Efficient Silicon Solar Cells - ScienceDirect

Discovery of Ternary Silicon Titanium Nitride with Spinel-Type Structure |  Scientific Reports
Discovery of Ternary Silicon Titanium Nitride with Spinel-Type Structure | Scientific Reports

Origin of photoactivity in graphitic carbon nitride and strategies for  enhancement of photocatalytic efficiency: insights from first-principles  comput ... - Physical Chemistry Chemical Physics (RSC Publishing)  DOI:10.1039/C4CP05288A
Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles comput ... - Physical Chemistry Chemical Physics (RSC Publishing) DOI:10.1039/C4CP05288A

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure. | Semantic Scholar
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure. | Semantic Scholar

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure | ACS Applied Materials & Interfaces
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure | ACS Applied Materials & Interfaces

Calculated electronic band structure of (a) TiN, (b) ZrN along high... |  Download Scientific Diagram
Calculated electronic band structure of (a) TiN, (b) ZrN along high... | Download Scientific Diagram

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure | ACS Applied Materials & Interfaces
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure | ACS Applied Materials & Interfaces

Band gap E g and nitrogen content of selected samples. | Download Table
Band gap E g and nitrogen content of selected samples. | Download Table

Tailoring the energy band gap and edges' potentials of g-C3N4/TiO2  composite photocatalysts for NOx removal - ScienceDirect
Tailoring the energy band gap and edges' potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal - ScienceDirect

Optimizing hot electron harvesting at planar metal-semiconductor interfaces  with titanium oxynitride thin films
Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films

What is a wide-band-gap semiconductor? | Toshiba Electronic Devices &  Storage Corporation | Asia-English
What is a wide-band-gap semiconductor? | Toshiba Electronic Devices & Storage Corporation | Asia-English